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ABSTRACT
Simplified free energy calculations based on force field energy
estimates of ligand-receptor interactions and thermal conforma-
tional sampling have emerged as a useful tool in structure-based
ligand design. Here we give an overview of the linear interaction
energy (LIE) method for calculating ligand binding free energies
from molecular dynamics simulations. A notable feature is that the
binding energetics can be predicted by considering only the
intermolecular interactions of the ligand in the associated and
dissociated states. The approximations behind this approach are
examined, and different parametrizations of the model are dis-
cussed. LIE-type methods appear particularly promising for com-
putational “lead optimization”. Recent applications to protein-
protein interactions and ion channel blocking are also discussed.

Introduction
It may be argued that molecular recognition is what
biochemistry is all about on the microscopic level. To
characterize the structure and energetics of molecular
complexes is therefore the key to understanding many
biological functions. It is especially worth emphasizing
that energetics often provides the most important and
useful link between structure and function of biomolecular
systems. To be able to predict the strength of noncovalent
binding between molecules and the 3D structures of the
corresponding complexes has thus been a longstanding
goal in computational chemistry. Aside from the theoreti-
cal challenge this problem presents, activities in this field
are also spurred by the potential impact on structure-
based drug design. Significant progress has been made
in computer-aided ligand design during the past decade,
and methodologies based on force field calculations, such
as molecular mechanics (MM), molecular dynamics (MD),
and Monte Carlo (MC) simulations, have been important

for many of these developments.1-3 Another category of
methods that has become increasingly useful for rapid
ligand screening and docking utilizes empirical and
knowledge-based scoring functions for binding affinity
estimation.4,5

The free energy perturbation (FEP) approach for cal-
culating relative binding free energies between two ligands
(L and L′) and a given receptor (R) employs the thermo-
dynamic cycle of Figure 1.2,6-8 Here, ∆∆Gsol

w and ∆∆Gsol
p

denote the differences in (“solvation”) free energy between
L and L′ in water and when bound to the solvated receptor
(protein) site, respectively, and the ∆Gbind’s are the cor-
responding binding energies:

With the FEP method one calculates the free energies
associated with the two unphysical paths LfL′(aq) and
LRfL′R(aq) corresponding to a mutation of L into L′ in
the free and bound states, respectively, and MD or MC
simulations are used to collect ensemble averages along
these paths. The paths are typically discretized into a
number of points, each represented by a separate poten-
tial energy function constructed as a linear combination
of the inital and final state potentials.2,6-8

While the FEP approach remains the most important
technique for free energy calculations by MD or MC
simulations. its drawbacks have been well recognized for
some time.8,9 They mainly pertain to the extensive con-
formational sampling that is usually required in order to
obtain meaningful, convergent results from such simula-
tions. Most of the computer time is also spent on
uninteresting configurations that correspond to unphysi-
cal “mixtures” of L and L′. This makes the method
computationally less attractive for applications where the
objective is to estimate binding free energy differences
between a large set of ligands, as is often encountered in
inhibitor design. The fact that the “perturbations” or
transformations involved in FEP cannot be too drastic is
also a clear limitation. It restricts the diversity of ligands
that can be treated and also the possibility of readily
examining the effect of protein mutations on the affinity
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FIGURE 1. Thermodynamic cycle used in FEP calculations of the
relative binding free energies of two ligands, L and L′, to a receptor
molecule R. The absolute binding free energy of L′ can, in principle,
be obtained by considering L as a dummy ligand with no inter-
molecular interactions.

∆Gbind(L′) - ∆Gbind(L) ) ∆∆Gsol
p - ∆∆Gsol

w (1)
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for a given ligand or substrate, since such mutations often
fall into the “too large perturbation” category.

Other types of applications of free energy calculations
are, however, much better suited for the FEP approach.
Typical cases where the method can be pushed to very
high accuracy are those where only a few van der Waals
parameters and charges are transformed from one set into
another and where no large conformational changes are
expected to occur. Such well-behaved problems may
include, e.g., calculations of relative solvation free energies
of simple ions10 and organic compounds that differ by only
a few substituents.11 Also, the calculation of relative
binding free energies of ligands to host molecules can, in
favorable cases (small perturbations), become accurate
enough for quantitative conclusions to be drawn. Some
recent examples from our group in this respect are studies
on ligand binding to cyclodextrins12 and dihydrofolate
reductase13 and of the ion permeation mechanism in
potassium channels.14-16 The FEP method has also proven
to be very useful in calculations on enzyme reaction
mechanisms.17,18 What is perhaps still not fully realized is
that it is most often the creation and annihilation of atoms
(i.e., Lennard-Jones potential terms) that cause problems
in FEP rather than changes in atomic charges (electrostatic
terms), even though the latter are more long-ranged.
These issues have been discussed elsewhere,8,9,19 and some
improvements of the FEP approach have been devised to
circumvent the problems.20

Several comprehensive reviews of the FEP method have
been published during the past decade,2,6,7 and here we
will instead focus on simplified free energy calculation
methods, which has become a field of considerable
activity.1-5,9,21-23 Recent reviews by Kollman and co-
workers1,22 and by Simonson et al. in this issue23 provide
a good overview of such methodologies, and since the
emphasis here will be mainly on our own results, we also
recommend those more general accounts to the interested
reader.

The Linear Interaction Energy (LIE) Method
The problems encountered when trying to use FEP
calculations for estimating binding affinities of series of
diverse ligands prompted us to examine whether it would
be possible to extract any useful information on the
binding energetics from simulations of only the physically
relevant states (free and bound) of the ligand.9 The idea
was to consider the absolute binding free energy of a
ligand (l) as the change in free energy when it is trans-
ferred from aqueous solution (free state) to its solvated
receptor binding site (bound state), that is,

where the superscripts “p” and “w” again denote protein
(receptor) and water, respectively. The “solvation” energy
of the ligand in a given environment, ∆Gsol

i (l), in turn
reflects the process of transferring the molecule from the
gas phase to this environment. Such a process can at least
formally be considered as consisting of two separate

steps: (1) creating the molecular van der Waals cavity in
the given environment and (2) turning on the electrostatic
interactions between the molecule and its surroundings.9

The original version of the LIE method employed the
linear response approximation to estimate the electrostatic
part of the solvation/binding free energies. The linear
response result for this component of the solvation
energies, ∆Gel

i (where i ) p or w), can be written as9,24

where the two averages are sampled with the electrostatic
interactions between the ligand and the surrounding
(l-s) turned on and off, respectively. One of the simplify-
ing features of the LIE method is that the term 〈Vel

l-s〉off is
neglected, which has been found to be a good approxima-
tion in water25 (see ref 3 for a further discussion).

Nonpolar contributions to the binding affinity, e.g.,
hydrophobic effects and van der Waals interactions, may
appear to be less straightforward to quantify. We decided
to try the simple idea of measuring the nonelectrostatic
part of the interaction between the ligand and its sur-
rounding environment in the associated and dissociated
states, and then just scale these energies by an empirically
derived coefficient. These energies are typically given by
a Lennard-Jones potential. The basic idea was not that
hydrophobic effects somehow reside in these energy
terms, but rather based on the following observations.
Solvation free energies for typical nonpolar compounds
are experimentally found to scale linearly with solute size
measures such as accessible surface area.26 We also found
from MD simulations that the average van der Waals
(Lennard-Jones) interaction energies scaled approximately
linearly with solute size both in polar and nonpolar
solvents.9 Combining these two observations would thus
suggest that it might be possible to use average ligand van
der Waals energies for estimating nonpolar binding con-
tributions, simply because they are correlated with the
same variables as “hydrophobic free energies”.

The above considerations thus led us to explore an
approximate equation for the binding free energy of the
following general type:

where 〈 〉 denotes MD or MC averages of the nonbonded
van der Waals (vdw) and electrostatic (el) interactions
between the ligand and its surrounding environment
(l-s), i.e., either the solvated receptor binding site (bound
state) or just solvent (free state). The ∆ in eq 4 denotes
the difference between such averages in the bound and
free states. In other words, two simulations are required:
one with the ligand free in solution and one with it bound
to solvated receptor. The parameters of this equation are
the weight coefficients R and â for the nonpolar and polar
binding energy contributions, respectively, and possibly
an additional constant γ.9,27 As noted above, the linear
response approximation predicts a value of â ) 1/2 for the
electrostatic coefficient.

∆Gbind(l) ) ∆Gsol
p (l) - ∆Gsol

w (l) (2)

∆Gel
i ) 1

2
{〈V l-s

el 〉on + 〈V l-s
el 〉off} (3)

∆Gbind ) R∆〈V l-s
vdw〉 + â∆〈V l-s

el 〉 + γ (4)
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Our initial studies using the LIE model involved cal-
culations on several different receptor-ligand systems,
namely, inhibitor complexes with endothiapepsin,9 HIV-1
protease,28,29 trypsin,19 and sugar recognition by a bacterial
glucose/galactose binding protein.30 It came as somewhat
of a surprise that the original parametrization of eq 4 with
R ) 0.16, â ) 1/2 and γ ) 0 for a small calibration set of
four endothiapepsin complexes9 also was reasonably
predictive for the other systems mentioned above. This
model contained only one free parameter (R), since â was
set to the linear response value (1/2) and the constant γ
was set to zero. The average unsigned error in the absolute
binding free energies for the 18 different complexes
considered in these studies was 1.2 kcal/mol,27 a result
that we found rather promising.

However, several questions still remained unanswered,
particularly with regard to the general applicability of the
simplified binding energy equation (eq 4), the validity of
the linear response approximation, possible dependencies
on the chemical nature of ligands and protein binding
sites, force fields, and computational protocols.

Relaxing the Linear Response Assumption
While the linear response approximation (eq 3) appeared
to be a useful route to more rapid calculations of
electrostatic free energies,9,24,31 it was not clear how well
the approximation was actually obeyed at the microscopic
level. That is, although it is the basis of many continuum
treatments, its validity in real molecular systems was not
fully established. To examine this issue in more detail,
A° qvist and Hansson25 used FEP simulations of a number
of different solute/solvent systems and separately calcu-
lated the left- and right-hand sides of eq 3. It was then
found that the linear response approximation holds well
for ionic solutes while significant deviations occur in some
cases, such as for neutral dipolar solutes containing
hydroxyl groups that can interact by specific hydrogen
bonding with the solvent. Such deviations from the linear
response behavior are reflected by the coefficient â not
being exactly 1/2 in eq 4, but typically assuming values
between 0.3 and 0.5, depending on the chemical compo-
sition of the solute.

The â parameters determined for different solutes in
water25 were subsequently used to derive a refined version
of the LIE model where ligands were assigned one out of
four possible â values depending on their chemical
structure.27 This model was parametrized for the 18
complexes mentioned above (Figure 2) with respect to the
R coefficient and yielded an optimal value of R ) 0.18,
with a mean unsigned error of only 0.6 kcal/mol for the
absolute binding free energies.27 Other notable results
from this recalibration of the method were that inclusion
of the additional constant γ did not improve the model
but yielded γ ) 0, and that attempting to use different â
values for the ligand in the bound and free states resulted
in very similar values of â in the two cases. The latter point
is of particular interest since it strongly suggests that the

basic characteristics of the electrostatic response are
similar inside a solvated protein and in water.

This revised LIE model27 has subsequently been em-
ployed in studies of dihydrofolate reductase (DHFR)32-34

and human thrombin inhibitors,35 as well as a number of
complexes with ligand recognition and transport proteins,
namely arabinose, lysine, fatty acid, and retinol binding
protein.3 The work on DHFR inhibitor binding involved
calculations both on analogues of the classical antifolate
methotrexate32 and on newly designed lipophilic ester soft
drugs against the Pneumocystis carinii enzyme.33,34 An
essential aspect of these studies was to examine not only
the ranking of different inhibitors but also the selectivity
of a given inhibitor for different DHFR enzymes. Hence,
in ref 32 the effects of point mutations of the human
enzyme on methotrexate affinity were addressed, while
the calculations on the nonclassical ester inhibitors fo-
cused on the selectivity between the human and the P.
carinii enzyme.33,34 The pneumonia caused by this fungus
is the major cause of death in patients with AIDS, and
DHFR is in this case a prime target for pharmaceutical
therapy. The soft drug concept, where the inhibitors are
designed to undergo a fast metabolism after having
exerted their effect at the site of action, holds considerable
promise for local treatment (e.g., inhalation) without
causing systemic side effects. The LIE calculations on
different DHFR complexes showed that the method can,
indeed, be useful also for prediction of inhibitor selectivity
(Figure 3).

The ability of the LIE method to rank a series of
thrombin inhibitors has also recently been examined.35

That work again demonstrated the capability of this
approach in predicting the relative affinities of chemically
very different ligands, as well as the possibility of estimat-
ing stereoselectivity. However, in the case of thrombin it
was found that eq 4 does require a constant term (γ )

FIGURE 2. Calculated vs observed free energies of binding for the
18 receptor-ligand complexes used to derive the LIE model of ref
27. This model uses the â values 0.5 for ionic ligands and 0.43, 0.37,
and 0.33 for neutral ligands with zero, one, and two or more OH
groups, respectively.
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-2.9 kcal/mol) in order to reproduce the absolute binding
free energies. The revised LIE model discussed in the
previous section with such an additional constant gives a
mean unsigned error of 0.6 kcal/mol for the data set of
eight thrombin inhibitors. Interestingly, it was also found
that a free parametrization of all three coefficients in eq
4 yielded essentially the same values of R and â as before.
In our view, this suggests that the possible system
dependence of the parametrization of eq 4 might be
reducible to different constant terms (γ) for different types
of receptor sites.

The above conclusion is also supported by simulations
of complexes of the previously mentioned recognition and
transport proteins.3 That is, ligand binding to the polar
binding sites of arabinose, lysine, and muscular fatty acid
binding protein appears well described by the revised LIE
model with no additional constant. On the other hand,
the absolute binding free energies of four examined
complexes with the entirely hydrophobic cavity of retinol
binding protein require a constant term of about -7 kcal/
mol in eq 4 in order to reproduce the experimental data.3

These results, as well as those for the thrombin complexes,
seem to indicate that the hydrophobicity of the receptor
site may be a source of system dependency that can be
alleviated by including a specific constant γ. A similar idea
has also been put forward by Wang et al.,36 who suggested
an interesting method based on desolvated nonpolar
surface areas in the complex as a means to distinguish
between different types of binding sites.

The possibility of introducing a constant term γ in eq
4 was suggested already in the original description of the
LIE method,9 where it was also noted that such a term is
in general needed if the approach is to be used for
estimating solvation free energies. Jorgensen and co-
workers have instead used a third term in eq 4 containing
the difference in solvent-accessible surface area (SASA)
of the ligand, scaled by an empirical coefficient.37-39 They

have obtained excellent results with this approach, but it
does seem to involve an unnecessary computational
operation since the SASAs have been found to be strongly
correlated with the intermolecular van der Waals energy
term.9,27,37,39 That is, the use of a SASA term appears to be
essentially equivalent to the introduction of a constant γ.
The work of Jorgensen and co-workers also employs MC
simulations where the protein backbone is kept rigid.38,39

This may offer a substantial improvement in speed, since
large-scale protein motions are suppressed, although that
might sometimes be a risky assumption.

Protein-Protein Interactions
The formation of protein-protein complexes is expected
to obey the same physical principles that underlie protein-
ligand interactions, but in the former case a more delicate
balance between entropic and enthalpic contributions
might be anticipated. The evaluation of absolute binding
free energies of protein-protein complexes is thus an
extremely difficult task to address with computer simula-
tion approaches. Calculation of such energies with the LIE
approach would require that one obtains convergent
values of the entire interaction energies, and these quanti-
ties can be in the order of several thousand kilocalories
per mole. This would require extremely long simulations
to get stable averages and result in an inefficient approach
with corresponding high uncertainties in the energetics.
As far as FEP or “potential of mean force” approaches are
concerned, calculation of absolute association energies for
large complexes is completely beyond the scope of such
methodologies.

Protein-protein interfaces are, however, frequently
composed of a cluster of “hot spot” residues at the center
of the interface surrounded by energetically less important
residues. The interface between the serine proteases and
their canonical protein inhibitors is composed of such

FIGURE 3. Stereoview showing amino acid residues that differ between the active sites of human (blue) and P. carinii DHFR (orange). The
glutamate interacting with the 2,4-diaminoquinazoline ring of the inhibitor is also shown. The selectivities of three such newly synthesized
inhibitors were successfully predicted.33
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“hot spot” residues (Figure 4), and the P1 residue has been
found to be responsible for almost 70% of the interaction
free energy in the binding of the bovine pancreatic trypsin
inhibitor (BPTI) to trypsin.40 Instead of trying to predict
the absolute binding free energies, one can try to calculate
the relative effect of different amino acids at specific
positions on the association energy. This is not such a
serious drawback, since protein-protein affinities are
often more useful to analyze in relative terms, i.e., in terms
of point mutations. The crystal structure analysis of 10
P1 variants of BPTI in complex with trypsin showed that
the secondary interactions are virtually unchanged, re-
gardless of amino acids at the P1 position.41 The P1-Gly
variant does not have a side chain that enters the S1 site,
and the Ka value for this variant thus corresponds to the
free energy from secondary interaction sites. In earlier FEP
calculations,42 the P1-Gly variant was successfully used
as a reference state when other P1 variants (Ala and Met)
were mutated to Gly to obtain the P1-S1 interaction free
energy. These calculations also showed that, in order to
obtain quantitative results, the water-mediated hydrogen-
bonding network at the P1-S1 interface had to be
correctly modeled.

Because of the variation in the chemical composition
and structure of the natural amino acids, finding a general
FEP strategy for point mutations is very difficult. Instead,
we tried to apply the LIE approach to investigate the effect
of mutations at the P1 position of BPTI on the association
energy when bound to trypsin.43 The idea was to treat the
P1 residue as the “ligand” within the LIE framework while
the rest of the inhibitor was considered as part of the
surroundings. That is, we tried to use the method to obtain
the relative affinities of BPTI variants differing only in the
P1 position. This strategy actually turns out to be very
useful, since the ligand-surroundings interaction energies
converge quite rapidly in the MD simulations.

Out of the 20 possible different trypsin-BPTI com-
plexes differing only at the P1 position, 13 were selected
such that most of the binding range was covered, includ-
ing those with the highest and lowest association con-
stants. The LIE method was found to reproduce the
experimental association energies in an impressive man-
ner, and a correlation coefficient of 0.99 was obtained
(Figure 5), excluding the P1-Asp and P1-Glu that are

associated with uncertainties regarding their protonation
and possible counterions. It is, however, clear from the
calculations that these two P1 variants do not bind in their
charged form.43 A subsequent LIE study of cold-active
trypsin from Atlantic salmon revealed that its enhanced
binding affinities44 for positively charged ligands are
entirely caused by electrostatic effects.45 Earlier continuum
calculations had also pointed toward the role of different
electrostatic surface potentials for cold adaptation of
trypsins.46

The trypsin-BPTI calculations were carried out with
the Amber95 force field,47 using the LIE model of ref 27,
and it is noteworthy that excellent results were obtained
without any reparametrization of the method for this force
field. Wang et al.36 have also demonstrated that the present
parametrization works well with the Amber95 potential
on the trypsin-benzamidine complex.

Combining LIE with Automated Docking: K+

Channel Blocking by Tetraethylammonium Ion
Binding affinity prediction methods of the LIE type are at
present still too slow for use in virtual screening or docking
applications. That is, if the affinities of a very large number
of (chemically or structurally) different complexes have
to be evaluated, it is critical that the “scoring” method is
very rapid. For such applications, empirical scoring func-
tions4,5 are currently the only feasible strategy. However,
once a limited set of putative complexes has been
obtained, for instance by a docking algorithm, it may be
a useful idea to try to refine these by the LIE approach.
This type of hierarchical procedure has been adopted by
us both in studies of DHFR inhibitors13,33,34 and, more
recently, in a first computational investigation of the
binding of blockers to K+ channels.48

The crystallographic structure of the KcsA potassium
channel49 was used together with results from earlier work
on the permeation mechanism14,15 to examine the binding
of tetraethylammonium (TEA) to KcsA. Experimental
investigations50 have made it possible to identify two
major binding regions for quartenary ammonium ions
near the extracellular and intracellular entrances to the
K+ channel pore (Figure 6). An automated docking ap-

FIGURE 4. Schematic drawing of the P1-S1 interactions in the
complex between bovine trypsin and BPTI.

FIGURE 5. Scatter diagram of calculated vs observed binding free
energies (in kilocalories per mole) of trypsin-BPTI complexes
relative to P1-Gly (excluding the P1-Asp and P1-Glu variants).43

The mean unsigned error in the calculated binding free energies is
0.38 kcal/mol.
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proach (AutoDock 3.0)51 was first employed to generate a
set of docked complexes that were grouped into clusters.
This was done both for external and internal binding
modes and for different K+ ion loading states of the four-
site selectivity filter14-16 of the KcsA channel. The highest
ranking, low-energy complexes predicted by the AutoDock
scoring function for different binding modes, and K+

loading states were then selected for further refinement
by the LIE method, now also allowing flexibility of the
protein and including explicit water solvation. No specific
reparametrization of eq 4 was attempted in this case,
either.

The automated docking yielded several clusters of
TEA+-KcsA complexes both at the external and internal
entrances to the selectivity filter. In cases where docking
to the bare protein was attempted, with no ions or water
molecules occupying the filter, the most stable complexes
were predicted to be those with partial insertion of one
of the TEA ethyl groups into the selectivity filter (Figure
7). When TEA was docked with the channel filter fully
occupied, binding was predicted (by AutoDock) for TEA
in the quasi-planar conformation at the inner and outer
pore entrances.

A number of these complexes were then further refined
by LIE calculations for different loading states of the
channel filter. The most stable complexes at the entrances
to the selectivity filter were predicted to have dissociation
constants in the millimolar region, in agreement with
experimental data.50 The subsequently solved crystal
structure of KcsA with tetrabutylantimony (a heavy-atom
analogue of tetrabutylammonium, TBA)52 indicates that
TBA binds in the internal cavity on the pore axis with the
central nitrogen atom at a distance of ∼4.9 Å from the
fourth (innermost) binding site of the selectivity filter. The
position of the central antimony atom in the blocker is
found to be in exactly the same position as that predicted
by the calculations for the nitrogen in TEA. Furthermore,
AutoDock/MD simulations of internal TBA binding also
reproduce the tetrabutylantimony crystal structure re-
garding the position and conformation of the blocker.

Experimental data show that the binding of TEA at the
extracellular side of K+ channels to a large extent depends
on a ring of aromatic residues near the entrance to the
pore. In KcsA, mutation of the corresponding tyrosine
residues to valine (Y82V) leads to a reduced TEA blocking
effect.50 The influence of this mutation on the externally
docked complexes was also examined by LIE calculations,
and a loss of TEA affinity by around a factor of 30 was
obtained, again in good agreement with experiments.50 It
was further concluded that the stabilizing effect of aro-
matic (Tyr of Phe) side chains on TEA at this position is
not due to cation-π interactions, but rather to stabilizing
hydrophobic as well as dipolar interactions.

Conclusions and Outlook
We have attempted here to give an overview of ligand-
receptor binding affinity calculations using the linear
interaction energy approach. The method was developed
as an alternative to more time-consuming free energy
perturbation calculations, in particular for predicting
affinities of sets of ligands that are too diverse to fall into
the “small perturbation” category required by the FEP
method. The LIE approach was originally based on the
linear response assumption for electrostatics together with
an empirical scaling of nonpolar interaction energies
intended to capture nonpolar or hydrophobic binding
contributions.

FIGURE 6. Schematic picture of K+ channel blocking by external
and/or internal TEA.

FIGURE 7. Side view of the selectivity filter region for the internal
docked structure of TEA after 300 ps of MD simulation.48 One of the
channel monomers is omitted for clarity. A K+ ion in the filter is
also shown (solid sphere).
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A number of research groups have reported LIE cal-
culations on various systems using different programs,
force fields, and computational procedures, and the
resulting optimizations of eq 4 can accordingly vary
considerably.27,35-39,53-56 Since it is of fundamental interest
to try to understand the physical basis of the parameter
values in eq 4, it is important to realize that a significant
part of the reported spread in parameter values probably
stems from different computational procedures rather
than from intrinsic properties of the actual molecular
systems. One of the critical technical issues in this type
of calculations seems to be the treatment of electrostatic
interactions, at least for charged ligands. The implementa-
tion of boundary conditions, cutoffs, system neutrality, etc.
is thus of considerable importance, as well as ensuring
compatibility of the simulations of the bound and free
states with respect to electrostatic solvation energies.3,19

Regardless of whether one acribes significance to the
nonempirical linear response considerations behind the
electrostatic part of the calculated binding free energy, or
whether one simply regards the parameters of the LIE
equation (eq 4) as freely optimizable, the method reveals
some rather unexpected features. That is, it came as
somewhat of a surprise that (i) binding free energies could
be so reasonably predicted by just considering the inter-
molecular interactions of the ligand and (ii) absolute
affinities, and not only relative ones, could be reasonably
well predicted from MD or MC simulations, something
that is not really within the scope of FEP calculations.
Furthermore, the idea that (iii) the intermolecular van der
Waals energies could be correlated with hydrophobic
binding contributions turned out to be quite useful. An
explanation for this in terms of atom number densities
of the different microenvironments in the bound and free
states has been given.27 We have also reiterated here that
the introduction of a surface area term in eq 4 is
unnecessary since it is basically equivalent to using the
constant γ in the equation. The fact that only inter-
molecular energies are needed for the binding estimate
has sometimes been interpreted in such a way that
intramolecular relaxation/strain, entropy, receptor de-
solvation, etc. are neglected. We have argued elsewhere3,27

that this is not really the case, but that these effects are
rather embedded in the linear response approximation
and the hydrophobic binding estimate. As far as electro-
statics is concerned, we also find it noteworthy that
optimization of eq 4 with different â’s for the bound and
free states yields very similar values of this coefficient in
the two environments. This seems to indicate that the
fundamental electrostatic response properties of proteins
are not very different from those of aqueous solvent.

While binding in a variety of different receptor-ligand
systems appears to be well modeled by our LIE parameters
given in ref 27, there seem to be exceptions that are not
due to different force fields or simulation setups. A notable
case here is the more or less entirely hydrophobic binding
of retinoids to RBP,3 but also the reported calculations on
P450cam53 and avidin36 seem to point in the same direc-
tion. To summarize, these results basically suggest that

binding which is dominated by hydrophobic interactions
requires a different and significantly higher value of the
nonpolar scaling factor R, or the addition of a constant γ.
It therefore seems worthwhile to try to understand whether
such a scaling factor or constant behaves in a systematic
way and could be predicted without using simulations on
a training set.

The possibility of extending the applicability of the LIE
approach to study protein-protein and protein-peptide
interactions has also been illustrated by recent simulations
of trypsin-BPTI complexes.43,45 It is our feeling that
treating specific residues as “ligands” in LIE calculations
could provide a useful way of quantitatively analyzing the
energetics and specificity of more complex protein and
peptide recognition processes. Another promising line of
development seems to be the combination of LIE calcula-
tions with automated docking and empirical scoring
methods in a hierarchical approach.33,34,48,57 This may be
an efficient way of bridging the gap between virtual
screening and docking with fast, but less accurate, scoring
functions and “lead optimization” that requires a more
detailed treatment. By selecting hits from the former type
of computations to further refinement by fully microscopic
LIE calculations (including explicit solvent, etc.), the
overall computational effort can be more efficiently
distributed.

The authors wish to sincerely thank the co-workers who have
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NorFa.

References
(1) Kollman, P. Recent Advances in Structure-Based Ligand Design

Using Molecular Dynamics and Monte Carlo Methods. Pharm.
Res. 1998, 15, 368-370.

(2) Lamb, M. L.; Jorgensen, W. L. Computational Approaches to
Molecular Recognition. Curr. Opin. Chem. Biol. 1997, 1, 449-457.

(3) A° qvist, J.; Marelius, J. The Linear Interaction Energy Method for
Predicting Ligand Binding Affinities. Combin. Chem. High Through-
put Screen., 2001, 4, 613-626.

(4) Oprea, T. I.; Marshall, G. R. Receptor-Based Prediction of Binding
Affinities. Perspect. Drug Discov. Des. 1998, 9, 35-61.
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